Lösung: Minimierung von Schaltnetzen

Aus Informatik
Wechseln zu: Navigation, Suche

Aufgabe 1

Vereinfachte Schaltfunktionen:

\begin{align}
A & = \overline {a} \, \overline {b} \, \overline {c} \lor \overline {a} \, \overline {b} \, \overline {d} \\
B & = \overline {a} \, \overline {b} \\
C & = \overline {a} \, \overline {c} \lor \overline {c} \, \overline {d} \\
D & = \overline {a} \, \overline {d} \lor \overline {c} \, \overline {d} \\
\end{align}


Schaltung:

This is supposed to be a flash animation. You'll need the flash plugin and a browser that supports it to view it.


Aufgabe 2

Mögliche vereinfachte Schaltfunktionen:

f = x_1 x_4 \lor \overline {x_1} \, \overline {x_4}

oder

f = x_1 x_4 \lor \overline {x_1} \, \overline {x_2}



Aufgabe 3

Mit Hilfe von KV-Diagrammen erhält man folgende mögliche Schaltfunktionen (a = 23, b = 22, c = 21, d = 20):


\begin{align}
A & = a \lor c \lor bd \lor \overline {b} \, \overline {d} \\
B & = \overline {b} \lor cd \lor \, \overline {c} \, \overline {d} \\
C & = b \lor \overline {c} \lor d \\
D & = a \lor \overline {b} c \lor \overline {b} \, \overline {d} \lor c \overline {d} \lor b \overline {c} d \\
E & = \overline {b} \, \overline {d} \lor c \overline {d} \\
F & = a \lor b \overline {c} \lor b \overline {d} \lor \overline {c} \, \overline {d} \\
G & = a \lor b \overline {c} \lor \overline {b} c \lor c \overline {d} \\
\end{align}


Schaltung:

This is supposed to be a flash animation. You'll need the flash plugin and a browser that supports it to view it.